Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hui Lin, Shi-Hai Xu,* Xiang-Chao Zeng and Xiao-Jian Liao

Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China

Correspondence e-mail: txush@jnu.edu.cn

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.006 Å R factor = 0.061 wR factor = 0.215 Data-to-parameter ratio = 11.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

24-Methylenecholest-4-ene-3β,6β-diol

The title compound, $C_{28}H_{46}O_2$, was isolated from soft coral (*Nephthea* sp.) collected from Yongxing island of the Xisha archipelago in the South China Sea and its crystal structure has been determined. In the crystal structure, intermolecular $O-H\cdots O$ hydrogen-bond interactions link the molecules into extended ribbons parallel to the *a* axis.

Received 6 May 2005 Accepted 25 May 2005 Online 31 May 2005

Comment

24-Methylenecholest-4-ene- 3β , 6β -diol, (I), was first isolated by Zeng *et al.* (1995) from the soft coral *Alcyonium patagonicum* collected from the South China Sea. Its configuration had also been elucidated by the reduction of steroidal 4-ene-3,6-diones with KBH₄-C₂H₅OH (Cui *et al.*, 2002), but no three-dimensional coordinates were available. Antitumour studies have shown that (I) is cytotoxic against the P-388 cell line, with an IC₅₀ value of 1 µg ml⁻¹ (Zeng *et al.*, 1995). We report here the crystal structure of (I).

Bond lengths and angles are unexceptional and are in good agreement with the corresponding values in stigmast-4-ene- 3β , 6β -diol (Yang *et al.*, 2004).

Figure 1

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

In the crystal structure of (I), there are two kinds of intermolecular hydrogen bonds. $O1-H\cdots O2$ hydrogen bonds link neighbouring molecules together, generating one-dimensional chains (Fig. 2). Adjacent chains are further connected by O2- $H\cdots O1$ hydrogen-bond interactions, generating extended ribbons running parallel to the *a* axis (Fig. 2).

Experimental

Chopped soft coral (7.8kg) was extracted with EtOH (18l) at room temperature and then partitioned between EtOAc and H₂O (4l each). The organic phase was chromatographed on a silica-gel column, eluting with EtOAc-petroleum ether with gradually increasing amounts of EtOAc. The fraction eluted with EtOAc-petroleum ether in the ratio 65:35 gave the title compound. A sample was dissolved in pyridine at room temperature and normal pressure; colourless crystals of (I) suitable for X-ray analysis grew over a period of one month when the solution was exposed to the air. Spectroscopic analysis: ¹H NMR (THF, 500Hz, δ, p.p.m.): 5.39 (s, 1H, C2-H), 4.69 (d, 1H, C25-H), 4.64 (s, 1H, C25-H), 4.02 (s, 1H, C4-H), 3.99 (m, 1H, C1-H), 1.24 (s, 3H, C18-H), 1.02, 1.01 (m, 6H, C2-H, C28-H), 0.74 (s, 3H, C19-H); ¹³C NMR (pyridine, δ, p.p.m.): 156.7 (1C, C24), 147.1 (1C, C3), 129.9 (1C, C2), 106.6 (1C, C25), 73.7 (1C, C4), 67.5 (1C, C1), 56.5 (1C, C10), 56.4 (1C, C7), 55.0 (1C, C14), 42.8 (1C, C11), 40.7 (1C, C12), 40.2 (1C, C5), 37.7(1C, C16), 37.3 (1C, C15), 36.0 (1C, C20), 35.1 (1C, C22), 34.1 (1C, C27), 31.3 (1C, C23), 31.0 (1C, C6), 30.2 (1C, C17), 28.4 (1C, C8), 24.5 (1C, C9), 22.1 (1C, C18), 21.9 (1C, C26), 21.6 (1C, C28), 21.3 (1C, C13), 18.9 (1C, C21), 12.2 (1C, C19).

Crystal data

 $\begin{array}{l} C_{28}H_{46}O_2\\ M_r = 414.65\\ Orthorhombic, P2_12_12_1\\ a = 8.168 \ (3) \ \text{\AA}\\ b = 10.933 \ (3) \ \text{\AA}\\ c = 28.446 \ (8) \ \text{\AA}\\ V = 2540.2 \ (13) \ \text{\AA}^3\\ Z = 4\\ D_x = 1.084 \ \text{Mg m}^{-3} \end{array}$

Data collection

Bruker SMART 1K CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.97, T_{max} = 0.99$ 14474 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.215$ S = 1.023170 reflections 272 parameters H-atom parameters constrained Mo $K\alpha$ radiation Cell parameters from 965 reflections $\theta = 2.84-21.54^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 273 (2) K Block, colourless $0.50 \times 0.40 \times 0.20 \text{ mm}$

3170 independent reflections 2044 reflections with $I > 2\sigma(I)$ $R_{int} = 0.038$ $\theta_{max} = 27.1^{\circ}$ $h = -9 \rightarrow 10$ $k = -11 \rightarrow 13$ $l = -35 \rightarrow 36$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1393P)^{2} + 0.1882P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.22 \text{ e} \text{ Å}^{-3}$

The extended ribbons formed by hydrogen bonds (dashed lines).

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1 - H1 \cdots O2^{i}$ $O2 - H2 \cdots O1^{ii}$	0.82 0.82	2.05 1.94	2.841 (4) 2.749 (4)	162 170
Symmetry codes: (i)	x + 1, y, z; (ii) x	$z - \frac{1}{2}, -y + \frac{3}{2}, -z$: + 2.	

In the absence of significant anomalous dispersion effects, Friedel pairs were merged. H atoms were positioned geometrically $[C-H = 0.98 \text{ Å} \text{ for CH}, 0.97 \text{ Å} \text{ for CH}_2, 0.96 \text{ Å} \text{ for CH}_3 \text{ and } 0.93 \text{ Å} \text{ for CH}(\text{olefinic}), \text{ and } O-H = 0.82 \text{ Å}], \text{ and refined using a riding model}, with <math>U_{\text{iso}} = 1.2U_{\text{eq}}(\text{parent}) (1.5U_{\text{eq}} \text{ for hydroxyl groups}).$

Data collection: *SMART* (Bruker,1999); cell refinement: *SAINT-Plus* (Bruker, 1999); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Bruker,1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This project was supported by the National 863 Programme of China (grant No. 2004AA628030) and the Science and Technology Project of Guangdong Province, China (grant No. 2004B30101011).

References

Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cui, J. G., Zeng, L. M., Su, J. Y. & He, X. Y. (2002). Chin. J. Org. Chem. 22, 515–518.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Yang, K., Xu, S. H., Zeng, X. C., Lu, J. H., Guo, S. H. & Li, X. L. (2004). Chin. J. Struct. Chem. 23, 531–534.

Zeng, L. M., Li, X. Q., Su, J. Y., Fu, X. & Schmitz, F. J. (1995). J. Nat. Prod. 58, 296–298.